MakeItFrom.com
Menu (ESC)

C87700 Bronze vs. EN 1.4521 Stainless Steel

C87700 bronze belongs to the copper alloys classification, while EN 1.4521 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C87700 bronze and the bottom bar is EN 1.4521 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 3.6
23
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
78
Tensile Strength: Ultimate (UTS), MPa 300
520
Tensile Strength: Yield (Proof), MPa 120
340

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 180
930
Melting Completion (Liquidus), °C 980
1460
Melting Onset (Solidus), °C 900
1410
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 120
23
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 48
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
12
Density, g/cm3 8.5
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 45
39
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.6
100
Resilience: Unit (Modulus of Resilience), kJ/m3 64
280
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 9.8
19
Strength to Weight: Bending, points 12
19
Thermal Diffusivity, mm2/s 34
6.2
Thermal Shock Resistance, points 11
18

Alloy Composition

Antimony (Sb), % 0 to 0.1
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
17 to 20
Copper (Cu), % 87.5 to 90.5
0
Iron (Fe), % 0 to 0.5
74.6 to 81.1
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.8
0 to 1.0
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 0 to 0.25
0
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.15
0 to 0.040
Silicon (Si), % 2.5 to 3.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 2.0
0
Titanium (Ti), % 0
0.15 to 0.8
Zinc (Zn), % 7.0 to 9.0
0
Residuals, % 0 to 0.8
0