MakeItFrom.com
Menu (ESC)

C87700 Bronze vs. EN 2.4951 Nickel

C87700 bronze belongs to the copper alloys classification, while EN 2.4951 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C87700 bronze and the bottom bar is EN 2.4951 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 3.6
34
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 300
750
Tensile Strength: Yield (Proof), MPa 120
270

Thermal Properties

Latent Heat of Fusion, J/g 250
320
Maximum Temperature: Mechanical, °C 180
1150
Melting Completion (Liquidus), °C 980
1360
Melting Onset (Solidus), °C 900
1310
Specific Heat Capacity, J/kg-K 400
460
Thermal Conductivity, W/m-K 120
12
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 48
1.7

Otherwise Unclassified Properties

Base Metal Price, % relative 29
60
Density, g/cm3 8.5
8.5
Embodied Carbon, kg CO2/kg material 2.7
9.3
Embodied Energy, MJ/kg 45
130
Embodied Water, L/kg 310
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.6
200
Resilience: Unit (Modulus of Resilience), kJ/m3 64
190
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 9.8
25
Strength to Weight: Bending, points 12
22
Thermal Diffusivity, mm2/s 34
3.1
Thermal Shock Resistance, points 11
23

Alloy Composition

Aluminum (Al), % 0
0 to 0.3
Antimony (Sb), % 0 to 0.1
0
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
18 to 21
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 87.5 to 90.5
0 to 0.5
Iron (Fe), % 0 to 0.5
0 to 5.0
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.8
0 to 1.0
Nickel (Ni), % 0 to 0.25
65.4 to 81.7
Phosphorus (P), % 0 to 0.15
0 to 0.020
Silicon (Si), % 2.5 to 3.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 2.0
0
Titanium (Ti), % 0
0.2 to 0.6
Zinc (Zn), % 7.0 to 9.0
0
Residuals, % 0 to 0.8
0