MakeItFrom.com
Menu (ESC)

C87700 Bronze vs. Grade Ti-Pd16 Titanium

C87700 bronze belongs to the copper alloys classification, while grade Ti-Pd16 titanium belongs to the titanium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C87700 bronze and the bottom bar is grade Ti-Pd16 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 3.6
17
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 42
40
Tensile Strength: Ultimate (UTS), MPa 300
390
Tensile Strength: Yield (Proof), MPa 120
310

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 180
320
Melting Completion (Liquidus), °C 980
1660
Melting Onset (Solidus), °C 900
1610
Specific Heat Capacity, J/kg-K 400
540
Thermal Conductivity, W/m-K 120
22
Thermal Expansion, µm/m-K 18
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 48
7.1

Otherwise Unclassified Properties

Density, g/cm3 8.5
4.5
Embodied Carbon, kg CO2/kg material 2.7
36
Embodied Energy, MJ/kg 45
600
Embodied Water, L/kg 310
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.6
62
Resilience: Unit (Modulus of Resilience), kJ/m3 64
440
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 9.8
24
Strength to Weight: Bending, points 12
26
Thermal Diffusivity, mm2/s 34
8.9
Thermal Shock Resistance, points 11
30

Alloy Composition

Antimony (Sb), % 0 to 0.1
0
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 87.5 to 90.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.5
0 to 0.3
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.8
0
Nickel (Ni), % 0 to 0.25
0 to 0.030
Oxygen (O), % 0
0 to 0.18
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.15
0
Silicon (Si), % 2.5 to 3.5
0
Tin (Sn), % 0 to 2.0
0
Titanium (Ti), % 0
98.8 to 99.96
Zinc (Zn), % 7.0 to 9.0
0
Residuals, % 0
0 to 0.4