MakeItFrom.com
Menu (ESC)

C87800 Brass vs. 5021 Aluminum

C87800 brass belongs to the copper alloys classification, while 5021 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C87800 brass and the bottom bar is 5021 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 25
1.1 to 3.4
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 42
26
Tensile Strength: Ultimate (UTS), MPa 590
300 to 310
Tensile Strength: Yield (Proof), MPa 350
240 to 270

Thermal Properties

Latent Heat of Fusion, J/g 260
400
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 920
640
Melting Onset (Solidus), °C 820
590
Specific Heat Capacity, J/kg-K 410
900
Thermal Conductivity, W/m-K 28
140
Thermal Expansion, µm/m-K 18
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
35
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
120

Otherwise Unclassified Properties

Base Metal Price, % relative 27
9.5
Density, g/cm3 8.3
2.7
Embodied Carbon, kg CO2/kg material 2.7
8.6
Embodied Energy, MJ/kg 44
150
Embodied Water, L/kg 300
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
3.1 to 10
Resilience: Unit (Modulus of Resilience), kJ/m3 540
440 to 550
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
50
Strength to Weight: Axial, points 20
30 to 32
Strength to Weight: Bending, points 19
37
Thermal Diffusivity, mm2/s 8.3
57
Thermal Shock Resistance, points 21
13 to 14

Alloy Composition

Aluminum (Al), % 0 to 0.15
95.2 to 97.7
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 80 to 84.2
0 to 0.15
Iron (Fe), % 0 to 0.15
0 to 0.5
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0 to 0.010
2.2 to 2.8
Manganese (Mn), % 0 to 0.15
0.1 to 0.5
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 3.8 to 4.2
0 to 0.4
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 12 to 16
0 to 0.15
Residuals, % 0
0 to 0.15