MakeItFrom.com
Menu (ESC)

C87800 Brass vs. 6008 Aluminum

C87800 brass belongs to the copper alloys classification, while 6008 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C87800 brass and the bottom bar is 6008 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 25
9.1 to 17
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 42
26
Tensile Strength: Ultimate (UTS), MPa 590
200 to 290
Tensile Strength: Yield (Proof), MPa 350
100 to 220

Thermal Properties

Latent Heat of Fusion, J/g 260
410
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 920
640
Melting Onset (Solidus), °C 820
620
Specific Heat Capacity, J/kg-K 410
900
Thermal Conductivity, W/m-K 28
190
Thermal Expansion, µm/m-K 18
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
49
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
160

Otherwise Unclassified Properties

Base Metal Price, % relative 27
9.5
Density, g/cm3 8.3
2.7
Embodied Carbon, kg CO2/kg material 2.7
8.5
Embodied Energy, MJ/kg 44
160
Embodied Water, L/kg 300
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
24 to 28
Resilience: Unit (Modulus of Resilience), kJ/m3 540
76 to 360
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
50
Strength to Weight: Axial, points 20
21 to 29
Strength to Weight: Bending, points 19
28 to 35
Thermal Diffusivity, mm2/s 8.3
77
Thermal Shock Resistance, points 21
9.0 to 13

Alloy Composition

Aluminum (Al), % 0 to 0.15
96.5 to 99.1
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 80 to 84.2
0 to 0.3
Iron (Fe), % 0 to 0.15
0 to 0.35
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0 to 0.010
0.4 to 0.7
Manganese (Mn), % 0 to 0.15
0 to 0.3
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 3.8 to 4.2
0.5 to 0.9
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0 to 0.25
0
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0.050 to 0.2
Zinc (Zn), % 12 to 16
0 to 0.2
Residuals, % 0
0 to 0.15