MakeItFrom.com
Menu (ESC)

C87800 Brass vs. 6018 Aluminum

C87800 brass belongs to the copper alloys classification, while 6018 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C87800 brass and the bottom bar is 6018 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 25
9.0 to 9.1
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 42
26
Tensile Strength: Ultimate (UTS), MPa 590
290 to 300
Tensile Strength: Yield (Proof), MPa 350
220 to 230

Thermal Properties

Latent Heat of Fusion, J/g 260
400
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 920
640
Melting Onset (Solidus), °C 820
570
Specific Heat Capacity, J/kg-K 410
890
Thermal Conductivity, W/m-K 28
170
Thermal Expansion, µm/m-K 18
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
44
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
140

Otherwise Unclassified Properties

Base Metal Price, % relative 27
10
Density, g/cm3 8.3
2.9
Embodied Carbon, kg CO2/kg material 2.7
8.2
Embodied Energy, MJ/kg 44
150
Embodied Water, L/kg 300
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
24 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 540
360 to 380
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
48
Strength to Weight: Axial, points 20
28 to 29
Strength to Weight: Bending, points 19
34 to 35
Thermal Diffusivity, mm2/s 8.3
65
Thermal Shock Resistance, points 21
13

Alloy Composition

Aluminum (Al), % 0 to 0.15
93.1 to 97.8
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Bismuth (Bi), % 0
0.4 to 0.7
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 80 to 84.2
0.15 to 0.4
Iron (Fe), % 0 to 0.15
0 to 0.7
Lead (Pb), % 0 to 0.15
0.4 to 1.2
Magnesium (Mg), % 0 to 0.010
0.6 to 1.2
Manganese (Mn), % 0 to 0.15
0.3 to 0.8
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 3.8 to 4.2
0.5 to 1.2
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0 to 0.25
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 12 to 16
0 to 0.3
Residuals, % 0
0 to 0.15