MakeItFrom.com
Menu (ESC)

C87800 Brass vs. 7022 Aluminum

C87800 brass belongs to the copper alloys classification, while 7022 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C87800 brass and the bottom bar is 7022 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 25
6.3 to 8.0
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 42
26
Tensile Strength: Ultimate (UTS), MPa 590
490 to 540
Tensile Strength: Yield (Proof), MPa 350
390 to 460

Thermal Properties

Latent Heat of Fusion, J/g 260
380
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 920
640
Melting Onset (Solidus), °C 820
480
Specific Heat Capacity, J/kg-K 410
870
Thermal Conductivity, W/m-K 28
140
Thermal Expansion, µm/m-K 18
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
21
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
65

Otherwise Unclassified Properties

Base Metal Price, % relative 27
10
Density, g/cm3 8.3
2.9
Embodied Carbon, kg CO2/kg material 2.7
8.5
Embodied Energy, MJ/kg 44
150
Embodied Water, L/kg 300
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
29 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 540
1100 to 1500
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
47
Strength to Weight: Axial, points 20
47 to 51
Strength to Weight: Bending, points 19
47 to 50
Thermal Diffusivity, mm2/s 8.3
54
Thermal Shock Resistance, points 21
21 to 23

Alloy Composition

Aluminum (Al), % 0 to 0.15
87.9 to 92.4
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Chromium (Cr), % 0
0.1 to 0.3
Copper (Cu), % 80 to 84.2
0.5 to 1.0
Iron (Fe), % 0 to 0.15
0 to 0.5
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0 to 0.010
2.6 to 3.7
Manganese (Mn), % 0 to 0.15
0.1 to 0.4
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 3.8 to 4.2
0 to 0.5
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0 to 0.25
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 12 to 16
4.3 to 5.2
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15