MakeItFrom.com
Menu (ESC)

C87800 Brass vs. AISI 446 Stainless Steel

C87800 brass belongs to the copper alloys classification, while AISI 446 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C87800 brass and the bottom bar is AISI 446 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 25
23
Poisson's Ratio 0.33
0.27
Rockwell B Hardness 86
84
Shear Modulus, GPa 42
79
Tensile Strength: Ultimate (UTS), MPa 590
570
Tensile Strength: Yield (Proof), MPa 350
300

Thermal Properties

Latent Heat of Fusion, J/g 260
290
Maximum Temperature: Mechanical, °C 170
1180
Melting Completion (Liquidus), °C 920
1510
Melting Onset (Solidus), °C 820
1430
Specific Heat Capacity, J/kg-K 410
490
Thermal Conductivity, W/m-K 28
17
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 27
12
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.4
Embodied Energy, MJ/kg 44
35
Embodied Water, L/kg 300
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
110
Resilience: Unit (Modulus of Resilience), kJ/m3 540
230
Stiffness to Weight: Axial, points 7.4
15
Stiffness to Weight: Bending, points 19
26
Strength to Weight: Axial, points 20
21
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 8.3
4.6
Thermal Shock Resistance, points 21
19

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
23 to 27
Copper (Cu), % 80 to 84.2
0
Iron (Fe), % 0 to 0.15
69.2 to 77
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.15
0 to 1.5
Nickel (Ni), % 0 to 0.2
0 to 0.75
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 3.8 to 4.2
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 12 to 16
0
Residuals, % 0 to 0.5
0