MakeItFrom.com
Menu (ESC)

C87800 Brass vs. ASTM A369 Grade FP2

C87800 brass belongs to the copper alloys classification, while ASTM A369 grade FP2 belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C87800 brass and the bottom bar is ASTM A369 grade FP2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 25
20
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 590
430
Tensile Strength: Yield (Proof), MPa 350
240

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 920
1470
Melting Onset (Solidus), °C 820
1430
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 28
49
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 27
2.6
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.6
Embodied Energy, MJ/kg 44
20
Embodied Water, L/kg 300
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
75
Resilience: Unit (Modulus of Resilience), kJ/m3 540
150
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 20
15
Strength to Weight: Bending, points 19
16
Thermal Diffusivity, mm2/s 8.3
13
Thermal Shock Resistance, points 21
13

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0.1 to 0.2
Chromium (Cr), % 0
0.5 to 0.81
Copper (Cu), % 80 to 84.2
0
Iron (Fe), % 0 to 0.15
97.4 to 98.6
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.15
0.3 to 0.61
Molybdenum (Mo), % 0
0.44 to 0.65
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.010
0 to 0.025
Silicon (Si), % 3.8 to 4.2
0.1 to 0.3
Sulfur (S), % 0 to 0.050
0 to 0.025
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 12 to 16
0
Residuals, % 0 to 0.5
0