MakeItFrom.com
Menu (ESC)

C87800 Brass vs. ASTM Grade HD Steel

C87800 brass belongs to the copper alloys classification, while ASTM grade HD steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C87800 brass and the bottom bar is ASTM grade HD steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 25
9.1
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 42
80
Tensile Strength: Ultimate (UTS), MPa 590
590
Tensile Strength: Yield (Proof), MPa 350
270

Thermal Properties

Latent Heat of Fusion, J/g 260
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 920
1410
Melting Onset (Solidus), °C 820
1370
Specific Heat Capacity, J/kg-K 410
490
Thermal Conductivity, W/m-K 28
16
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 27
17
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 2.7
3.1
Embodied Energy, MJ/kg 44
45
Embodied Water, L/kg 300
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
44
Resilience: Unit (Modulus of Resilience), kJ/m3 540
180
Stiffness to Weight: Axial, points 7.4
15
Stiffness to Weight: Bending, points 19
26
Strength to Weight: Axial, points 20
21
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 8.3
4.3
Thermal Shock Resistance, points 21
19

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.5
Chromium (Cr), % 0
26 to 30
Copper (Cu), % 80 to 84.2
0
Iron (Fe), % 0 to 0.15
58.4 to 70
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.15
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.2
4.0 to 7.0
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 3.8 to 4.2
0 to 2.0
Sulfur (S), % 0 to 0.050
0 to 0.040
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 12 to 16
0
Residuals, % 0 to 0.5
0