MakeItFrom.com
Menu (ESC)

C87800 Brass vs. EN 1.4477 Stainless Steel

C87800 brass belongs to the copper alloys classification, while EN 1.4477 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C87800 brass and the bottom bar is EN 1.4477 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 25
22 to 23
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 42
81
Tensile Strength: Ultimate (UTS), MPa 590
880 to 930
Tensile Strength: Yield (Proof), MPa 350
620 to 730

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 920
1430
Melting Onset (Solidus), °C 820
1380
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 28
13
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 27
20
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 2.7
3.7
Embodied Energy, MJ/kg 44
52
Embodied Water, L/kg 300
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
180 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 540
940 to 1290
Stiffness to Weight: Axial, points 7.4
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 20
31 to 33
Strength to Weight: Bending, points 19
26 to 27
Thermal Diffusivity, mm2/s 8.3
3.5
Thermal Shock Resistance, points 21
23 to 25

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 80 to 84.2
0 to 0.8
Iron (Fe), % 0 to 0.15
56.6 to 63.6
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.15
0.8 to 1.5
Molybdenum (Mo), % 0
1.5 to 2.6
Nickel (Ni), % 0 to 0.2
5.8 to 7.5
Nitrogen (N), % 0
0.3 to 0.4
Phosphorus (P), % 0 to 0.010
0 to 0.030
Silicon (Si), % 3.8 to 4.2
0 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.015
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 12 to 16
0
Residuals, % 0 to 0.5
0