MakeItFrom.com
Menu (ESC)

C87800 Brass vs. EN 1.4512 Stainless Steel

C87800 brass belongs to the copper alloys classification, while EN 1.4512 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C87800 brass and the bottom bar is EN 1.4512 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 25
28
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 590
470
Tensile Strength: Yield (Proof), MPa 350
240

Thermal Properties

Latent Heat of Fusion, J/g 260
270
Maximum Temperature: Mechanical, °C 170
720
Melting Completion (Liquidus), °C 920
1450
Melting Onset (Solidus), °C 820
1400
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 28
25
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 27
6.5
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.0
Embodied Energy, MJ/kg 44
27
Embodied Water, L/kg 300
95

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
110
Resilience: Unit (Modulus of Resilience), kJ/m3 540
150
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 20
17
Strength to Weight: Bending, points 19
17
Thermal Diffusivity, mm2/s 8.3
6.7
Thermal Shock Resistance, points 21
17

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
10.5 to 12.5
Copper (Cu), % 80 to 84.2
0
Iron (Fe), % 0 to 0.15
84.8 to 89.5
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 3.8 to 4.2
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.015
Tin (Sn), % 0 to 0.25
0
Titanium (Ti), % 0
0 to 0.65
Zinc (Zn), % 12 to 16
0
Residuals, % 0 to 0.5
0