MakeItFrom.com
Menu (ESC)

C87800 Brass vs. EN 1.7366 Steel

C87800 brass belongs to the copper alloys classification, while EN 1.7366 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C87800 brass and the bottom bar is EN 1.7366 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 25
17 to 19
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
74
Tensile Strength: Ultimate (UTS), MPa 590
460 to 710
Tensile Strength: Yield (Proof), MPa 350
230 to 480

Thermal Properties

Latent Heat of Fusion, J/g 260
260
Maximum Temperature: Mechanical, °C 170
510
Melting Completion (Liquidus), °C 920
1460
Melting Onset (Solidus), °C 820
1420
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 28
40
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 27
4.3
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.7
Embodied Energy, MJ/kg 44
23
Embodied Water, L/kg 300
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
74 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 540
140 to 600
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 20
16 to 25
Strength to Weight: Bending, points 19
17 to 23
Thermal Diffusivity, mm2/s 8.3
11
Thermal Shock Resistance, points 21
13 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.18
Chromium (Cr), % 0
4.0 to 6.0
Copper (Cu), % 80 to 84.2
0
Iron (Fe), % 0 to 0.15
91.9 to 95.3
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.15
0.3 to 0.8
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.010
0 to 0.025
Silicon (Si), % 3.8 to 4.2
0 to 0.4
Sulfur (S), % 0 to 0.050
0 to 0.015
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 12 to 16
0
Residuals, % 0 to 0.5
0