MakeItFrom.com
Menu (ESC)

C87800 Brass vs. C18400 Copper

Both C87800 brass and C18400 copper are copper alloys. They have 83% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C87800 brass and the bottom bar is C18400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 25
13 to 50
Poisson's Ratio 0.33
0.34
Rockwell B Hardness 86
16 to 84
Shear Modulus, GPa 42
44
Tensile Strength: Ultimate (UTS), MPa 590
270 to 490
Tensile Strength: Yield (Proof), MPa 350
110 to 480

Thermal Properties

Latent Heat of Fusion, J/g 260
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 920
1080
Melting Onset (Solidus), °C 820
1070
Specific Heat Capacity, J/kg-K 410
390
Thermal Conductivity, W/m-K 28
320
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
80
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
81

Otherwise Unclassified Properties

Base Metal Price, % relative 27
31
Density, g/cm3 8.3
8.9
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 44
41
Embodied Water, L/kg 300
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
63 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 540
54 to 980
Stiffness to Weight: Axial, points 7.4
7.3
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 20
8.5 to 15
Strength to Weight: Bending, points 19
10 to 16
Thermal Diffusivity, mm2/s 8.3
94
Thermal Shock Resistance, points 21
9.6 to 17

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0 to 0.0050
Calcium (Ca), % 0
0 to 0.0050
Chromium (Cr), % 0
0.4 to 1.2
Copper (Cu), % 80 to 84.2
97.2 to 99.6
Iron (Fe), % 0 to 0.15
0 to 0.15
Lead (Pb), % 0 to 0.15
0
Lithium (Li), % 0
0 to 0.050
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.010
0 to 0.050
Silicon (Si), % 3.8 to 4.2
0 to 0.1
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 12 to 16
0 to 0.7
Residuals, % 0
0 to 0.5