MakeItFrom.com
Menu (ESC)

C87800 Brass vs. C19000 Copper

Both C87800 brass and C19000 copper are copper alloys. They have 83% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C87800 brass and the bottom bar is C19000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 25
2.5 to 50
Poisson's Ratio 0.33
0.34
Rockwell B Hardness 86
45 to 94
Shear Modulus, GPa 42
43
Tensile Strength: Ultimate (UTS), MPa 590
260 to 760
Tensile Strength: Yield (Proof), MPa 350
140 to 630

Thermal Properties

Latent Heat of Fusion, J/g 260
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 920
1080
Melting Onset (Solidus), °C 820
1040
Specific Heat Capacity, J/kg-K 410
390
Thermal Conductivity, W/m-K 28
250
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
60
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
61

Otherwise Unclassified Properties

Base Metal Price, % relative 27
31
Density, g/cm3 8.3
8.9
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 44
42
Embodied Water, L/kg 300
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
18 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 540
89 to 1730
Stiffness to Weight: Axial, points 7.4
7.2
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 20
8.2 to 24
Strength to Weight: Bending, points 19
10 to 21
Thermal Diffusivity, mm2/s 8.3
73
Thermal Shock Resistance, points 21
9.3 to 27

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Copper (Cu), % 80 to 84.2
96.9 to 99
Iron (Fe), % 0 to 0.15
0 to 0.1
Lead (Pb), % 0 to 0.15
0 to 0.050
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0 to 0.2
0.9 to 1.3
Phosphorus (P), % 0 to 0.010
0.15 to 0.35
Silicon (Si), % 3.8 to 4.2
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 12 to 16
0 to 0.8
Residuals, % 0
0 to 0.5