MakeItFrom.com
Menu (ESC)

C87800 Brass vs. C36000 Brass

Both C87800 brass and C36000 brass are copper alloys. They have 76% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C87800 brass and the bottom bar is C36000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 25
5.8 to 23
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 42
39
Tensile Strength: Ultimate (UTS), MPa 590
330 to 530
Tensile Strength: Yield (Proof), MPa 350
140 to 260

Thermal Properties

Latent Heat of Fusion, J/g 260
170
Maximum Temperature: Mechanical, °C 170
120
Melting Completion (Liquidus), °C 920
900
Melting Onset (Solidus), °C 820
890
Specific Heat Capacity, J/kg-K 410
380
Thermal Conductivity, W/m-K 28
120
Thermal Expansion, µm/m-K 18
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
26
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
29

Otherwise Unclassified Properties

Base Metal Price, % relative 27
23
Density, g/cm3 8.3
8.2
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 44
45
Embodied Water, L/kg 300
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
25 to 62
Resilience: Unit (Modulus of Resilience), kJ/m3 540
89 to 340
Stiffness to Weight: Axial, points 7.4
7.0
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 20
11 to 18
Strength to Weight: Bending, points 19
13 to 18
Thermal Diffusivity, mm2/s 8.3
37
Thermal Shock Resistance, points 21
11 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Copper (Cu), % 80 to 84.2
60 to 63
Iron (Fe), % 0 to 0.15
0 to 0.35
Lead (Pb), % 0 to 0.15
2.5 to 3.7
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 3.8 to 4.2
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 12 to 16
32.5 to 37.5
Residuals, % 0
0 to 0.5