MakeItFrom.com
Menu (ESC)

C87800 Brass vs. C61000 Bronze

Both C87800 brass and C61000 bronze are copper alloys. They have 83% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C87800 brass and the bottom bar is C61000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 25
29 to 50
Poisson's Ratio 0.33
0.34
Rockwell B Hardness 86
60 to 85
Shear Modulus, GPa 42
42
Tensile Strength: Ultimate (UTS), MPa 590
390 to 460
Tensile Strength: Yield (Proof), MPa 350
150 to 190

Thermal Properties

Latent Heat of Fusion, J/g 260
220
Maximum Temperature: Mechanical, °C 170
210
Melting Completion (Liquidus), °C 920
1040
Melting Onset (Solidus), °C 820
990
Specific Heat Capacity, J/kg-K 410
420
Thermal Conductivity, W/m-K 28
69
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
15
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
16

Otherwise Unclassified Properties

Base Metal Price, % relative 27
29
Density, g/cm3 8.3
8.5
Embodied Carbon, kg CO2/kg material 2.7
3.0
Embodied Energy, MJ/kg 44
49
Embodied Water, L/kg 300
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
110 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 540
100 to 160
Stiffness to Weight: Axial, points 7.4
7.4
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 20
13 to 15
Strength to Weight: Bending, points 19
14 to 16
Thermal Diffusivity, mm2/s 8.3
19
Thermal Shock Resistance, points 21
14 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.15
6.0 to 8.5
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Copper (Cu), % 80 to 84.2
90.2 to 94
Iron (Fe), % 0 to 0.15
0 to 0.5
Lead (Pb), % 0 to 0.15
0 to 0.020
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 3.8 to 4.2
0 to 0.1
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 12 to 16
0 to 0.2
Residuals, % 0
0 to 0.5