MakeItFrom.com
Menu (ESC)

C87800 Brass vs. C72800 Copper-nickel

Both C87800 brass and C72800 copper-nickel are copper alloys. They have 82% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C87800 brass and the bottom bar is C72800 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 25
3.9 to 23
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 42
44
Tensile Strength: Ultimate (UTS), MPa 590
520 to 1270
Tensile Strength: Yield (Proof), MPa 350
250 to 1210

Thermal Properties

Latent Heat of Fusion, J/g 260
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 920
1080
Melting Onset (Solidus), °C 820
920
Specific Heat Capacity, J/kg-K 410
380
Thermal Conductivity, W/m-K 28
55
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
11
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
11

Otherwise Unclassified Properties

Base Metal Price, % relative 27
38
Density, g/cm3 8.3
8.8
Embodied Carbon, kg CO2/kg material 2.7
4.4
Embodied Energy, MJ/kg 44
68
Embodied Water, L/kg 300
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
37 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 540
260 to 5650
Stiffness to Weight: Axial, points 7.4
7.4
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 20
17 to 40
Strength to Weight: Bending, points 19
16 to 30
Thermal Diffusivity, mm2/s 8.3
17
Thermal Shock Resistance, points 21
19 to 45

Alloy Composition

Aluminum (Al), % 0 to 0.15
0 to 0.1
Antimony (Sb), % 0 to 0.050
0 to 0.020
Arsenic (As), % 0 to 0.050
0
Bismuth (Bi), % 0
0 to 0.0010
Boron (B), % 0
0 to 0.0010
Copper (Cu), % 80 to 84.2
78.3 to 82.8
Iron (Fe), % 0 to 0.15
0 to 0.5
Lead (Pb), % 0 to 0.15
0 to 0.0050
Magnesium (Mg), % 0 to 0.010
0.0050 to 0.15
Manganese (Mn), % 0 to 0.15
0.050 to 0.3
Nickel (Ni), % 0 to 0.2
9.5 to 10.5
Niobium (Nb), % 0
0.1 to 0.3
Phosphorus (P), % 0 to 0.010
0 to 0.0050
Silicon (Si), % 3.8 to 4.2
0 to 0.050
Sulfur (S), % 0 to 0.050
0 to 0.0025
Tin (Sn), % 0 to 0.25
7.5 to 8.5
Titanium (Ti), % 0
0 to 0.010
Zinc (Zn), % 12 to 16
0 to 1.0
Residuals, % 0
0 to 0.3