MakeItFrom.com
Menu (ESC)

C87800 Brass vs. S21900 Stainless Steel

C87800 brass belongs to the copper alloys classification, while S21900 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C87800 brass and the bottom bar is S21900 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 25
50
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
78
Tensile Strength: Ultimate (UTS), MPa 590
710
Tensile Strength: Yield (Proof), MPa 350
390

Thermal Properties

Latent Heat of Fusion, J/g 260
290
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 920
1400
Melting Onset (Solidus), °C 820
1350
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 28
14
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 27
15
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 2.7
3.0
Embodied Energy, MJ/kg 44
43
Embodied Water, L/kg 300
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
300
Resilience: Unit (Modulus of Resilience), kJ/m3 540
380
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 20
26
Strength to Weight: Bending, points 19
23
Thermal Diffusivity, mm2/s 8.3
3.8
Thermal Shock Resistance, points 21
15

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
19 to 21.5
Copper (Cu), % 80 to 84.2
0
Iron (Fe), % 0 to 0.15
59.4 to 67.4
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.15
8.0 to 10
Nickel (Ni), % 0 to 0.2
5.5 to 7.5
Nitrogen (N), % 0
0.15 to 0.4
Phosphorus (P), % 0 to 0.010
0 to 0.045
Silicon (Si), % 3.8 to 4.2
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 12 to 16
0
Residuals, % 0 to 0.5
0