MakeItFrom.com
Menu (ESC)

C87800 Brass vs. S31100 Stainless Steel

C87800 brass belongs to the copper alloys classification, while S31100 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C87800 brass and the bottom bar is S31100 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 25
4.5
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 42
79
Tensile Strength: Ultimate (UTS), MPa 590
1000
Tensile Strength: Yield (Proof), MPa 350
710

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 920
1420
Melting Onset (Solidus), °C 820
1380
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 28
16
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 27
16
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 2.7
3.1
Embodied Energy, MJ/kg 44
44
Embodied Water, L/kg 300
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
40
Resilience: Unit (Modulus of Resilience), kJ/m3 540
1240
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 20
36
Strength to Weight: Bending, points 19
29
Thermal Diffusivity, mm2/s 8.3
4.2
Thermal Shock Resistance, points 21
28

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
25 to 27
Copper (Cu), % 80 to 84.2
0
Iron (Fe), % 0 to 0.15
63.6 to 69
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Nickel (Ni), % 0 to 0.2
6.0 to 7.0
Phosphorus (P), % 0 to 0.010
0 to 0.045
Silicon (Si), % 3.8 to 4.2
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 0 to 0.25
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 12 to 16
0
Residuals, % 0 to 0.5
0