MakeItFrom.com
Menu (ESC)

C87800 Brass vs. S32003 Stainless Steel

C87800 brass belongs to the copper alloys classification, while S32003 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C87800 brass and the bottom bar is S32003 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 25
28
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 42
79
Tensile Strength: Ultimate (UTS), MPa 590
730
Tensile Strength: Yield (Proof), MPa 350
510

Thermal Properties

Latent Heat of Fusion, J/g 260
290
Maximum Temperature: Mechanical, °C 170
1010
Melting Completion (Liquidus), °C 920
1440
Melting Onset (Solidus), °C 820
1400
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 28
15
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 27
14
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.0
Embodied Energy, MJ/kg 44
42
Embodied Water, L/kg 300
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
180
Resilience: Unit (Modulus of Resilience), kJ/m3 540
660
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 20
26
Strength to Weight: Bending, points 19
23
Thermal Diffusivity, mm2/s 8.3
4.0
Thermal Shock Resistance, points 21
21

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19.5 to 22.5
Copper (Cu), % 80 to 84.2
0
Iron (Fe), % 0 to 0.15
68.2 to 75.9
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.15
0 to 2.0
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0 to 0.2
3.0 to 4.0
Nitrogen (N), % 0
0.14 to 0.2
Phosphorus (P), % 0 to 0.010
0 to 0.030
Silicon (Si), % 3.8 to 4.2
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.020
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 12 to 16
0
Residuals, % 0 to 0.5
0