MakeItFrom.com
Menu (ESC)

C87800 Brass vs. S41425 Stainless Steel

C87800 brass belongs to the copper alloys classification, while S41425 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C87800 brass and the bottom bar is S41425 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 25
17
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
77
Tensile Strength: Ultimate (UTS), MPa 590
920
Tensile Strength: Yield (Proof), MPa 350
750

Thermal Properties

Latent Heat of Fusion, J/g 260
280
Maximum Temperature: Mechanical, °C 170
810
Melting Completion (Liquidus), °C 920
1450
Melting Onset (Solidus), °C 820
1410
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 28
16
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 27
13
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 2.7
2.9
Embodied Energy, MJ/kg 44
40
Embodied Water, L/kg 300
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
150
Resilience: Unit (Modulus of Resilience), kJ/m3 540
1420
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 20
33
Strength to Weight: Bending, points 19
27
Thermal Diffusivity, mm2/s 8.3
4.4
Thermal Shock Resistance, points 21
33

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12 to 15
Copper (Cu), % 80 to 84.2
0 to 0.3
Iron (Fe), % 0 to 0.15
74 to 81.9
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.15
0.5 to 1.0
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0 to 0.2
4.0 to 7.0
Nitrogen (N), % 0
0.060 to 0.12
Phosphorus (P), % 0 to 0.010
0 to 0.020
Silicon (Si), % 3.8 to 4.2
0 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.0050
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 12 to 16
0
Residuals, % 0 to 0.5
0