MakeItFrom.com
Menu (ESC)

C87800 Brass vs. S44626 Stainless Steel

C87800 brass belongs to the copper alloys classification, while S44626 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C87800 brass and the bottom bar is S44626 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 25
23
Poisson's Ratio 0.33
0.27
Rockwell B Hardness 86
83
Shear Modulus, GPa 42
80
Tensile Strength: Ultimate (UTS), MPa 590
540
Tensile Strength: Yield (Proof), MPa 350
350

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 920
1440
Melting Onset (Solidus), °C 820
1390
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 28
17
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 27
14
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.9
Embodied Energy, MJ/kg 44
42
Embodied Water, L/kg 300
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
110
Resilience: Unit (Modulus of Resilience), kJ/m3 540
300
Stiffness to Weight: Axial, points 7.4
15
Stiffness to Weight: Bending, points 19
26
Strength to Weight: Axial, points 20
19
Strength to Weight: Bending, points 19
19
Thermal Diffusivity, mm2/s 8.3
4.6
Thermal Shock Resistance, points 21
18

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
25 to 27
Copper (Cu), % 80 to 84.2
0 to 0.2
Iron (Fe), % 0 to 0.15
68.1 to 74.1
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.15
0 to 0.75
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 0 to 0.2
0 to 0.5
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 3.8 to 4.2
0 to 0.75
Sulfur (S), % 0 to 0.050
0 to 0.020
Tin (Sn), % 0 to 0.25
0
Titanium (Ti), % 0
0.2 to 1.0
Zinc (Zn), % 12 to 16
0
Residuals, % 0 to 0.5
0