MakeItFrom.com
Menu (ESC)

C87900 Brass vs. C14520 Copper

Both C87900 brass and C14520 copper are copper alloys. They have 66% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C87900 brass and the bottom bar is C14520 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 25
9.0 to 9.6
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 41
43
Tensile Strength: Ultimate (UTS), MPa 480
290 to 330
Tensile Strength: Yield (Proof), MPa 240
230 to 250

Thermal Properties

Latent Heat of Fusion, J/g 190
210
Maximum Temperature: Mechanical, °C 130
200
Melting Completion (Liquidus), °C 930
1080
Melting Onset (Solidus), °C 900
1050
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 120
320
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
85
Electrical Conductivity: Equal Weight (Specific), % IACS 17
85

Otherwise Unclassified Properties

Base Metal Price, % relative 24
33
Density, g/cm3 8.1
8.9
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 46
42
Embodied Water, L/kg 320
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
24 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 270
240 to 280
Stiffness to Weight: Axial, points 7.3
7.2
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 17
9.0 to 10
Strength to Weight: Bending, points 17
11 to 12
Thermal Diffusivity, mm2/s 37
94
Thermal Shock Resistance, points 16
10 to 12

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Copper (Cu), % 63 to 69.2
99.2 to 99.596
Iron (Fe), % 0 to 0.4
0
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.010
0.0040 to 0.020
Silicon (Si), % 0.8 to 1.2
0
Sulfur (S), % 0 to 0.050
0
Tellurium (Te), % 0
0.4 to 0.7
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 30 to 36
0