MakeItFrom.com
Menu (ESC)

C87900 Brass vs. C46200 Brass

Both C87900 brass and C46200 brass are copper alloys. They have a very high 97% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C87900 brass and the bottom bar is C46200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 25
17 to 34
Poisson's Ratio 0.31
0.31
Shear Modulus, GPa 41
40
Tensile Strength: Ultimate (UTS), MPa 480
370 to 480
Tensile Strength: Yield (Proof), MPa 240
120 to 290

Thermal Properties

Latent Heat of Fusion, J/g 190
170
Maximum Temperature: Mechanical, °C 130
120
Melting Completion (Liquidus), °C 930
840
Melting Onset (Solidus), °C 900
800
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 120
110
Thermal Expansion, µm/m-K 20
20

Otherwise Unclassified Properties

Base Metal Price, % relative 24
24
Density, g/cm3 8.1
8.1
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 46
46
Embodied Water, L/kg 320
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
69 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 270
72 to 400
Stiffness to Weight: Axial, points 7.3
7.2
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 17
13 to 16
Strength to Weight: Bending, points 17
14 to 17
Thermal Diffusivity, mm2/s 37
35
Thermal Shock Resistance, points 16
12 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Copper (Cu), % 63 to 69.2
62 to 65
Iron (Fe), % 0 to 0.4
0 to 0.1
Lead (Pb), % 0 to 0.25
0 to 0.2
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0.8 to 1.2
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0 to 0.25
0.5 to 1.0
Zinc (Zn), % 30 to 36
33.3 to 37.5
Residuals, % 0
0 to 0.4