MakeItFrom.com
Menu (ESC)

C87900 Brass vs. C63600 Bronze

Both C87900 brass and C63600 bronze are copper alloys. They have 68% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C87900 brass and the bottom bar is C63600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 25
30 to 66
Poisson's Ratio 0.31
0.34
Rockwell B Hardness 70
71 to 84
Shear Modulus, GPa 41
42
Tensile Strength: Ultimate (UTS), MPa 480
410 to 540
Tensile Strength: Yield (Proof), MPa 240
150 to 260

Thermal Properties

Latent Heat of Fusion, J/g 190
230
Maximum Temperature: Mechanical, °C 130
210
Melting Completion (Liquidus), °C 930
1030
Melting Onset (Solidus), °C 900
980
Specific Heat Capacity, J/kg-K 390
410
Thermal Conductivity, W/m-K 120
57
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
12
Electrical Conductivity: Equal Weight (Specific), % IACS 17
13

Otherwise Unclassified Properties

Base Metal Price, % relative 24
30
Density, g/cm3 8.1
8.6
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 46
45
Embodied Water, L/kg 320
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
98 to 290
Resilience: Unit (Modulus of Resilience), kJ/m3 270
100 to 300
Stiffness to Weight: Axial, points 7.3
7.3
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 17
13 to 18
Strength to Weight: Bending, points 17
14 to 17
Thermal Diffusivity, mm2/s 37
16
Thermal Shock Resistance, points 16
15 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.15
3.0 to 4.0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0 to 0.15
Copper (Cu), % 63 to 69.2
93 to 96.3
Iron (Fe), % 0 to 0.4
0 to 0.15
Lead (Pb), % 0 to 0.25
0 to 0.050
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0 to 0.5
0 to 0.15
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0.8 to 1.2
0.7 to 1.3
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0 to 0.25
0 to 0.2
Zinc (Zn), % 30 to 36
0 to 0.5
Residuals, % 0
0 to 0.5