MakeItFrom.com
Menu (ESC)

C87900 Brass vs. C70600 Copper-nickel

Both C87900 brass and C70600 copper-nickel are copper alloys. They have 67% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C87900 brass and the bottom bar is C70600 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 25
3.0 to 34
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 41
46
Tensile Strength: Ultimate (UTS), MPa 480
290 to 570
Tensile Strength: Yield (Proof), MPa 240
63 to 270

Thermal Properties

Latent Heat of Fusion, J/g 190
220
Maximum Temperature: Mechanical, °C 130
220
Melting Completion (Liquidus), °C 930
1150
Melting Onset (Solidus), °C 900
1100
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 120
44
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
9.8
Electrical Conductivity: Equal Weight (Specific), % IACS 17
9.9

Otherwise Unclassified Properties

Base Metal Price, % relative 24
33
Density, g/cm3 8.1
8.9
Embodied Carbon, kg CO2/kg material 2.7
3.4
Embodied Energy, MJ/kg 46
51
Embodied Water, L/kg 320
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
6.5 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 270
16 to 290
Stiffness to Weight: Axial, points 7.3
7.7
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 17
9.1 to 18
Strength to Weight: Bending, points 17
11 to 17
Thermal Diffusivity, mm2/s 37
13
Thermal Shock Resistance, points 16
9.8 to 19

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Copper (Cu), % 63 to 69.2
84.7 to 90
Iron (Fe), % 0 to 0.4
1.0 to 1.8
Lead (Pb), % 0 to 0.25
0 to 0.050
Manganese (Mn), % 0 to 0.15
0 to 1.0
Nickel (Ni), % 0 to 0.5
9.0 to 11
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0.8 to 1.2
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 30 to 36
0 to 1.0
Residuals, % 0
0 to 0.5