MakeItFrom.com
Menu (ESC)

C87900 Brass vs. C81500 Copper

Both C87900 brass and C81500 copper are copper alloys. They have 66% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C87900 brass and the bottom bar is C81500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 25
17
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 41
44
Tensile Strength: Ultimate (UTS), MPa 480
350
Tensile Strength: Yield (Proof), MPa 240
280

Thermal Properties

Latent Heat of Fusion, J/g 190
210
Maximum Temperature: Mechanical, °C 130
200
Melting Completion (Liquidus), °C 930
1090
Melting Onset (Solidus), °C 900
1080
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 120
320
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
82
Electrical Conductivity: Equal Weight (Specific), % IACS 17
83

Otherwise Unclassified Properties

Base Metal Price, % relative 24
31
Density, g/cm3 8.1
8.9
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 46
41
Embodied Water, L/kg 320
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
56
Resilience: Unit (Modulus of Resilience), kJ/m3 270
330
Stiffness to Weight: Axial, points 7.3
7.3
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 17
11
Strength to Weight: Bending, points 17
12
Thermal Diffusivity, mm2/s 37
91
Thermal Shock Resistance, points 16
12

Alloy Composition

Aluminum (Al), % 0 to 0.15
0 to 0.1
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Chromium (Cr), % 0
0.4 to 1.5
Copper (Cu), % 63 to 69.2
97.4 to 99.6
Iron (Fe), % 0 to 0.4
0 to 0.1
Lead (Pb), % 0 to 0.25
0 to 0.020
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0.8 to 1.2
0 to 0.15
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0 to 0.25
0 to 0.1
Zinc (Zn), % 30 to 36
0 to 0.1
Residuals, % 0
0 to 0.5