MakeItFrom.com
Menu (ESC)

C87900 Brass vs. C92600 Bronze

Both C87900 brass and C92600 bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 69% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C87900 brass and the bottom bar is C92600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 25
30
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 41
40
Tensile Strength: Ultimate (UTS), MPa 480
300
Tensile Strength: Yield (Proof), MPa 240
140

Thermal Properties

Latent Heat of Fusion, J/g 190
190
Maximum Temperature: Mechanical, °C 130
170
Melting Completion (Liquidus), °C 930
980
Melting Onset (Solidus), °C 900
840
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 120
67
Thermal Expansion, µm/m-K 20
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 17
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 24
34
Density, g/cm3 8.1
8.7
Embodied Carbon, kg CO2/kg material 2.7
3.6
Embodied Energy, MJ/kg 46
58
Embodied Water, L/kg 320
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
74
Resilience: Unit (Modulus of Resilience), kJ/m3 270
88
Stiffness to Weight: Axial, points 7.3
6.8
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 17
9.6
Strength to Weight: Bending, points 17
11
Thermal Diffusivity, mm2/s 37
21
Thermal Shock Resistance, points 16
11

Alloy Composition

Aluminum (Al), % 0 to 0.15
0 to 0.0050
Antimony (Sb), % 0 to 0.050
0 to 0.25
Arsenic (As), % 0 to 0.050
0
Copper (Cu), % 63 to 69.2
86 to 88.5
Iron (Fe), % 0 to 0.4
0 to 0.2
Lead (Pb), % 0 to 0.25
0.8 to 1.5
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0 to 0.5
0 to 0.7
Phosphorus (P), % 0 to 0.010
0 to 0.030
Silicon (Si), % 0.8 to 1.2
0 to 0.0050
Sulfur (S), % 0 to 0.050
0 to 0.050
Tin (Sn), % 0 to 0.25
9.3 to 10.5
Zinc (Zn), % 30 to 36
1.3 to 2.5
Residuals, % 0
0 to 0.7