MakeItFrom.com
Menu (ESC)

C89320 Bronze vs. 3005 Aluminum

C89320 bronze belongs to the copper alloys classification, while 3005 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C89320 bronze and the bottom bar is 3005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 17
1.1 to 16
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 270
140 to 270
Tensile Strength: Yield (Proof), MPa 140
51 to 240

Thermal Properties

Latent Heat of Fusion, J/g 190
400
Maximum Temperature: Mechanical, °C 180
180
Melting Completion (Liquidus), °C 1050
660
Melting Onset (Solidus), °C 930
640
Specific Heat Capacity, J/kg-K 360
900
Thermal Conductivity, W/m-K 56
160
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
42
Electrical Conductivity: Equal Weight (Specific), % IACS 15
140

Otherwise Unclassified Properties

Base Metal Price, % relative 37
9.5
Density, g/cm3 8.9
2.8
Embodied Carbon, kg CO2/kg material 3.5
8.2
Embodied Energy, MJ/kg 56
150
Embodied Water, L/kg 490
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38
2.2 to 18
Resilience: Unit (Modulus of Resilience), kJ/m3 93
18 to 390
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
49
Strength to Weight: Axial, points 8.5
14 to 27
Strength to Weight: Bending, points 10
21 to 33
Thermal Diffusivity, mm2/s 17
64
Thermal Shock Resistance, points 10
6.0 to 12

Alloy Composition

Aluminum (Al), % 0 to 0.0050
95.7 to 98.8
Antimony (Sb), % 0 to 0.35
0
Bismuth (Bi), % 4.0 to 6.0
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 87 to 91
0 to 0.3
Iron (Fe), % 0 to 0.2
0 to 0.7
Lead (Pb), % 0 to 0.090
0
Magnesium (Mg), % 0
0.2 to 0.6
Manganese (Mn), % 0
1.0 to 1.5
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.3
0
Silicon (Si), % 0 to 0.0050
0 to 0.6
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 5.0 to 7.0
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0 to 1.0
0 to 0.25
Residuals, % 0
0 to 0.15