MakeItFrom.com
Menu (ESC)

C89320 Bronze vs. C66700 Brass

Both C89320 bronze and C66700 brass are copper alloys. They have 71% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C89320 bronze and the bottom bar is C66700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 17
2.0 to 58
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 40
41
Tensile Strength: Ultimate (UTS), MPa 270
340 to 690
Tensile Strength: Yield (Proof), MPa 140
100 to 640

Thermal Properties

Latent Heat of Fusion, J/g 190
180
Maximum Temperature: Mechanical, °C 180
140
Melting Completion (Liquidus), °C 1050
1090
Melting Onset (Solidus), °C 930
1050
Specific Heat Capacity, J/kg-K 360
390
Thermal Conductivity, W/m-K 56
97
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
17
Electrical Conductivity: Equal Weight (Specific), % IACS 15
19

Otherwise Unclassified Properties

Base Metal Price, % relative 37
25
Density, g/cm3 8.9
8.2
Embodied Carbon, kg CO2/kg material 3.5
2.7
Embodied Energy, MJ/kg 56
45
Embodied Water, L/kg 490
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38
13 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 93
49 to 1900
Stiffness to Weight: Axial, points 6.8
7.3
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 8.5
11 to 23
Strength to Weight: Bending, points 10
13 to 21
Thermal Diffusivity, mm2/s 17
30
Thermal Shock Resistance, points 10
11 to 23

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.35
0
Bismuth (Bi), % 4.0 to 6.0
0
Copper (Cu), % 87 to 91
68.5 to 71.5
Iron (Fe), % 0 to 0.2
0 to 0.1
Lead (Pb), % 0 to 0.090
0 to 0.070
Manganese (Mn), % 0
0.8 to 1.5
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.3
0
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 5.0 to 7.0
0
Zinc (Zn), % 0 to 1.0
26.3 to 30.7
Residuals, % 0
0 to 0.5