MakeItFrom.com
Menu (ESC)

C89320 Bronze vs. N08700 Stainless Steel

C89320 bronze belongs to the copper alloys classification, while N08700 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C89320 bronze and the bottom bar is N08700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
32
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
79
Tensile Strength: Ultimate (UTS), MPa 270
620
Tensile Strength: Yield (Proof), MPa 140
270

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 1050
1450
Melting Onset (Solidus), °C 930
1400
Specific Heat Capacity, J/kg-K 360
470
Thermal Conductivity, W/m-K 56
13
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 15
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 37
32
Density, g/cm3 8.9
8.1
Embodied Carbon, kg CO2/kg material 3.5
6.0
Embodied Energy, MJ/kg 56
82
Embodied Water, L/kg 490
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38
160
Resilience: Unit (Modulus of Resilience), kJ/m3 93
180
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.5
21
Strength to Weight: Bending, points 10
20
Thermal Diffusivity, mm2/s 17
3.5
Thermal Shock Resistance, points 10
14

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.35
0
Bismuth (Bi), % 4.0 to 6.0
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
19 to 23
Copper (Cu), % 87 to 91
0 to 0.5
Iron (Fe), % 0 to 0.2
42 to 52.7
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
4.3 to 5.0
Nickel (Ni), % 0 to 1.0
24 to 26
Niobium (Nb), % 0
0 to 0.4
Phosphorus (P), % 0 to 0.3
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.080
0 to 0.030
Tin (Sn), % 5.0 to 7.0
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0