MakeItFrom.com
Menu (ESC)

C89320 Bronze vs. S36200 Stainless Steel

C89320 bronze belongs to the copper alloys classification, while S36200 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C89320 bronze and the bottom bar is S36200 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 17
3.4 to 4.6
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 270
1180 to 1410
Tensile Strength: Yield (Proof), MPa 140
960 to 1240

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 180
820
Melting Completion (Liquidus), °C 1050
1440
Melting Onset (Solidus), °C 930
1400
Specific Heat Capacity, J/kg-K 360
480
Thermal Conductivity, W/m-K 56
16
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 15
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 37
12
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.5
2.8
Embodied Energy, MJ/kg 56
40
Embodied Water, L/kg 490
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38
46 to 51
Resilience: Unit (Modulus of Resilience), kJ/m3 93
2380 to 3930
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.5
42 to 50
Strength to Weight: Bending, points 10
32 to 36
Thermal Diffusivity, mm2/s 17
4.3
Thermal Shock Resistance, points 10
40 to 48

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0 to 0.1
Antimony (Sb), % 0 to 0.35
0
Bismuth (Bi), % 4.0 to 6.0
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
14 to 14.5
Copper (Cu), % 87 to 91
0
Iron (Fe), % 0 to 0.2
75.4 to 79.5
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.3
Nickel (Ni), % 0 to 1.0
6.5 to 7.0
Phosphorus (P), % 0 to 0.3
0 to 0.030
Silicon (Si), % 0 to 0.0050
0 to 0.3
Sulfur (S), % 0 to 0.080
0 to 0.030
Tin (Sn), % 5.0 to 7.0
0
Titanium (Ti), % 0
0.6 to 0.9
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0