MakeItFrom.com
Menu (ESC)

C90200 Bronze vs. ACI-ASTM CT15C Steel

C90200 bronze belongs to the copper alloys classification, while ACI-ASTM CT15C steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C90200 bronze and the bottom bar is ACI-ASTM CT15C steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
140
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 30
23
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 41
76
Tensile Strength: Ultimate (UTS), MPa 260
500
Tensile Strength: Yield (Proof), MPa 110
190

Thermal Properties

Latent Heat of Fusion, J/g 200
310
Maximum Temperature: Mechanical, °C 180
1080
Melting Completion (Liquidus), °C 1050
1410
Melting Onset (Solidus), °C 880
1360
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 62
12
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 13
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 34
36
Density, g/cm3 8.8
8.0
Embodied Carbon, kg CO2/kg material 3.3
6.1
Embodied Energy, MJ/kg 53
88
Embodied Water, L/kg 370
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
90
Resilience: Unit (Modulus of Resilience), kJ/m3 55
93
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.3
17
Strength to Weight: Bending, points 10
17
Thermal Diffusivity, mm2/s 19
3.2
Thermal Shock Resistance, points 9.5
12

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 91 to 94
0
Iron (Fe), % 0 to 0.2
40.3 to 49.2
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0.15 to 1.5
Nickel (Ni), % 0 to 0.5
31 to 34
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0 to 0.050
0 to 0.030
Silicon (Si), % 0 to 0.0050
0.15 to 1.5
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 6.0 to 8.0
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.6
0