MakeItFrom.com
Menu (ESC)

C90200 Bronze vs. AISI 202 Stainless Steel

C90200 bronze belongs to the copper alloys classification, while AISI 202 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C90200 bronze and the bottom bar is AISI 202 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
210 to 300
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 30
14 to 45
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 41
77
Tensile Strength: Ultimate (UTS), MPa 260
700 to 980
Tensile Strength: Yield (Proof), MPa 110
310 to 580

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 180
910
Melting Completion (Liquidus), °C 1050
1400
Melting Onset (Solidus), °C 880
1360
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 62
15
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 13
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 34
13
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 3.3
2.8
Embodied Energy, MJ/kg 53
40
Embodied Water, L/kg 370
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
120 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 55
250 to 840
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.3
25 to 35
Strength to Weight: Bending, points 10
23 to 29
Thermal Diffusivity, mm2/s 19
4.0
Thermal Shock Resistance, points 9.5
15 to 21

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 91 to 94
0
Iron (Fe), % 0 to 0.2
63.5 to 71.5
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
7.5 to 10
Nickel (Ni), % 0 to 0.5
4.0 to 6.0
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.050
0 to 0.060
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 6.0 to 8.0
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.6
0