MakeItFrom.com
Menu (ESC)

C90200 Bronze vs. ASTM Grade HP Steel

C90200 bronze belongs to the copper alloys classification, while ASTM grade HP steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C90200 bronze and the bottom bar is ASTM grade HP steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
140
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 30
5.1
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 41
78
Tensile Strength: Ultimate (UTS), MPa 260
490
Tensile Strength: Yield (Proof), MPa 110
260

Thermal Properties

Latent Heat of Fusion, J/g 200
320
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 1050
1370
Melting Onset (Solidus), °C 880
1330
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 62
12
Thermal Expansion, µm/m-K 18
16

Otherwise Unclassified Properties

Base Metal Price, % relative 34
34
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 3.3
5.8
Embodied Energy, MJ/kg 53
82
Embodied Water, L/kg 370
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
21
Resilience: Unit (Modulus of Resilience), kJ/m3 55
170
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.3
17
Strength to Weight: Bending, points 10
17
Thermal Diffusivity, mm2/s 19
3.2
Thermal Shock Resistance, points 9.5
11

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0.35 to 0.75
Chromium (Cr), % 0
24 to 28
Copper (Cu), % 91 to 94
0
Iron (Fe), % 0 to 0.2
29.2 to 42.7
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.5
33 to 37
Phosphorus (P), % 0 to 0.050
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 2.5
Sulfur (S), % 0 to 0.050
0 to 0.040
Tin (Sn), % 6.0 to 8.0
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.6
0