MakeItFrom.com
Menu (ESC)

C90200 Bronze vs. AWS ERTi-12

C90200 bronze belongs to the copper alloys classification, while AWS ERTi-12 belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C90200 bronze and the bottom bar is AWS ERTi-12.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 30
12
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 41
41
Tensile Strength: Ultimate (UTS), MPa 260
480
Tensile Strength: Yield (Proof), MPa 110
340

Thermal Properties

Latent Heat of Fusion, J/g 200
420
Maximum Temperature: Mechanical, °C 180
320
Melting Completion (Liquidus), °C 1050
1670
Melting Onset (Solidus), °C 880
1620
Specific Heat Capacity, J/kg-K 370
540
Thermal Conductivity, W/m-K 62
21
Thermal Expansion, µm/m-K 18
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 13
7.1

Otherwise Unclassified Properties

Base Metal Price, % relative 34
37
Density, g/cm3 8.8
4.5
Embodied Carbon, kg CO2/kg material 3.3
31
Embodied Energy, MJ/kg 53
510
Embodied Water, L/kg 370
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
52
Resilience: Unit (Modulus of Resilience), kJ/m3 55
550
Stiffness to Weight: Axial, points 7.0
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 8.3
30
Strength to Weight: Bending, points 10
30
Thermal Diffusivity, mm2/s 19
8.7
Thermal Shock Resistance, points 9.5
37

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.030
Copper (Cu), % 91 to 94
0
Hydrogen (H), % 0
0 to 0.0080
Iron (Fe), % 0 to 0.2
0 to 0.15
Lead (Pb), % 0 to 0.3
0
Molybdenum (Mo), % 0
0.2 to 0.4
Nickel (Ni), % 0 to 0.5
0.060 to 0.090
Nitrogen (N), % 0
0 to 0.015
Oxygen (O), % 0
0.080 to 0.16
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 6.0 to 8.0
0
Titanium (Ti), % 0
99.147 to 99.66
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.6
0