MakeItFrom.com
Menu (ESC)

C90200 Bronze vs. EN 1.4509 Stainless Steel

C90200 bronze belongs to the copper alloys classification, while EN 1.4509 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C90200 bronze and the bottom bar is EN 1.4509 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
180
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 30
21
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 41
77
Tensile Strength: Ultimate (UTS), MPa 260
530
Tensile Strength: Yield (Proof), MPa 110
260

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 180
890
Melting Completion (Liquidus), °C 1050
1440
Melting Onset (Solidus), °C 880
1400
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 62
25
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 13
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 34
13
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 3.3
2.8
Embodied Energy, MJ/kg 53
41
Embodied Water, L/kg 370
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
90
Resilience: Unit (Modulus of Resilience), kJ/m3 55
180
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.3
19
Strength to Weight: Bending, points 10
19
Thermal Diffusivity, mm2/s 19
6.8
Thermal Shock Resistance, points 9.5
19

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17.5 to 18.5
Copper (Cu), % 91 to 94
0
Iron (Fe), % 0 to 0.2
77.8 to 82.1
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0
0.3 to 1.0
Phosphorus (P), % 0 to 0.050
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.015
Tin (Sn), % 6.0 to 8.0
0
Titanium (Ti), % 0
0.1 to 0.6
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.6
0