MakeItFrom.com
Menu (ESC)

C90200 Bronze vs. EN 1.4592 Stainless Steel

C90200 bronze belongs to the copper alloys classification, while EN 1.4592 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C90200 bronze and the bottom bar is EN 1.4592 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 30
23
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 41
82
Tensile Strength: Ultimate (UTS), MPa 260
630
Tensile Strength: Yield (Proof), MPa 110
500

Thermal Properties

Latent Heat of Fusion, J/g 200
310
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 1050
1460
Melting Onset (Solidus), °C 880
1410
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 62
17
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 13
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 34
18
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 3.3
3.8
Embodied Energy, MJ/kg 53
52
Embodied Water, L/kg 370
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
130
Resilience: Unit (Modulus of Resilience), kJ/m3 55
610
Stiffness to Weight: Axial, points 7.0
15
Stiffness to Weight: Bending, points 18
26
Strength to Weight: Axial, points 8.3
23
Strength to Weight: Bending, points 10
21
Thermal Diffusivity, mm2/s 19
4.6
Thermal Shock Resistance, points 9.5
20

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 91 to 94
0
Iron (Fe), % 0 to 0.2
62.6 to 68.4
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 0 to 0.5
0
Nitrogen (N), % 0
0 to 0.045
Phosphorus (P), % 0 to 0.050
0 to 0.030
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.010
Tin (Sn), % 6.0 to 8.0
0
Titanium (Ti), % 0
0.15 to 0.8
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.6
0