MakeItFrom.com
Menu (ESC)

C90200 Bronze vs. EN 1.4618 Stainless Steel

C90200 bronze belongs to the copper alloys classification, while EN 1.4618 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C90200 bronze and the bottom bar is EN 1.4618 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
200 to 210
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 30
51
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 41
77
Tensile Strength: Ultimate (UTS), MPa 260
680 to 700
Tensile Strength: Yield (Proof), MPa 110
250 to 260

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 180
900
Melting Completion (Liquidus), °C 1050
1400
Melting Onset (Solidus), °C 880
1360
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 62
15
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 13
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 34
13
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 3.3
2.7
Embodied Energy, MJ/kg 53
39
Embodied Water, L/kg 370
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
270 to 280
Resilience: Unit (Modulus of Resilience), kJ/m3 55
160 to 170
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.3
24 to 25
Strength to Weight: Bending, points 10
22 to 23
Thermal Diffusivity, mm2/s 19
4.0
Thermal Shock Resistance, points 9.5
15 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
16.5 to 18.5
Copper (Cu), % 91 to 94
1.0 to 2.5
Iron (Fe), % 0 to 0.2
62.7 to 72.5
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
5.5 to 9.5
Nickel (Ni), % 0 to 0.5
4.5 to 5.5
Nitrogen (N), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.050
0 to 0.070
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.010
Tin (Sn), % 6.0 to 8.0
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.6
0