MakeItFrom.com
Menu (ESC)

C90200 Bronze vs. EN 1.7710 Steel

C90200 bronze belongs to the copper alloys classification, while EN 1.7710 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C90200 bronze and the bottom bar is EN 1.7710 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
280 to 320
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 30
6.8 to 11
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 41
73
Tensile Strength: Ultimate (UTS), MPa 260
930 to 1070
Tensile Strength: Yield (Proof), MPa 110
800 to 1060

Thermal Properties

Latent Heat of Fusion, J/g 200
260
Maximum Temperature: Mechanical, °C 180
440
Melting Completion (Liquidus), °C 1050
1470
Melting Onset (Solidus), °C 880
1430
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 62
41
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 13
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 34
3.5
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.3
2.2
Embodied Energy, MJ/kg 53
30
Embodied Water, L/kg 370
57

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
73 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 55
1680 to 2970
Stiffness to Weight: Axial, points 7.0
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.3
33 to 38
Strength to Weight: Bending, points 10
27 to 30
Thermal Diffusivity, mm2/s 19
11
Thermal Shock Resistance, points 9.5
27 to 31

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0.12 to 0.18
Chromium (Cr), % 0
1.3 to 1.8
Copper (Cu), % 91 to 94
0
Iron (Fe), % 0 to 0.2
95.1 to 97
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0.6 to 1.0
Molybdenum (Mo), % 0
0.8 to 1.0
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.050
0 to 0.025
Silicon (Si), % 0 to 0.0050
0 to 0.6
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 6.0 to 8.0
0
Vanadium (V), % 0
0.15 to 0.25
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.6
0