MakeItFrom.com
Menu (ESC)

C90200 Bronze vs. C94800 Bronze

Both C90200 bronze and C94800 bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have a moderately high 93% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C90200 bronze and the bottom bar is C94800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 30
22
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 41
43
Tensile Strength: Ultimate (UTS), MPa 260
310
Tensile Strength: Yield (Proof), MPa 110
160

Thermal Properties

Latent Heat of Fusion, J/g 200
200
Maximum Temperature: Mechanical, °C 180
190
Melting Completion (Liquidus), °C 1050
1030
Melting Onset (Solidus), °C 880
900
Specific Heat Capacity, J/kg-K 370
380
Thermal Conductivity, W/m-K 62
39
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
12
Electrical Conductivity: Equal Weight (Specific), % IACS 13
12

Otherwise Unclassified Properties

Base Metal Price, % relative 34
34
Density, g/cm3 8.8
8.8
Embodied Carbon, kg CO2/kg material 3.3
3.5
Embodied Energy, MJ/kg 53
56
Embodied Water, L/kg 370
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
58
Resilience: Unit (Modulus of Resilience), kJ/m3 55
110
Stiffness to Weight: Axial, points 7.0
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 8.3
9.8
Strength to Weight: Bending, points 10
12
Thermal Diffusivity, mm2/s 19
12
Thermal Shock Resistance, points 9.5
11

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0 to 0.0050
Antimony (Sb), % 0 to 0.2
0 to 0.15
Copper (Cu), % 91 to 94
84 to 89
Iron (Fe), % 0 to 0.2
0 to 0.25
Lead (Pb), % 0 to 0.3
0.3 to 1.0
Manganese (Mn), % 0
0 to 0.2
Nickel (Ni), % 0 to 0.5
4.5 to 6.0
Phosphorus (P), % 0 to 0.050
0 to 0.050
Silicon (Si), % 0 to 0.0050
0 to 0.0050
Sulfur (S), % 0 to 0.050
0 to 0.050
Tin (Sn), % 6.0 to 8.0
4.5 to 6.0
Zinc (Zn), % 0 to 0.5
1.0 to 2.5
Residuals, % 0
0 to 1.3