MakeItFrom.com
Menu (ESC)

C90200 Bronze vs. K93050 Alloy

C90200 bronze belongs to the copper alloys classification, while K93050 alloy belongs to the iron alloys. There are 19 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C90200 bronze and the bottom bar is K93050 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Poisson's Ratio 0.34
0.3
Shear Modulus, GPa 41
72
Tensile Strength: Ultimate (UTS), MPa 260
500 to 680

Thermal Properties

Latent Heat of Fusion, J/g 200
270
Melting Completion (Liquidus), °C 1050
1430
Melting Onset (Solidus), °C 880
1380
Specific Heat Capacity, J/kg-K 370
460
Thermal Expansion, µm/m-K 18
12

Otherwise Unclassified Properties

Base Metal Price, % relative 34
26
Density, g/cm3 8.8
8.2
Embodied Carbon, kg CO2/kg material 3.3
4.7
Embodied Energy, MJ/kg 53
65
Embodied Water, L/kg 370
120

Common Calculations

Stiffness to Weight: Axial, points 7.0
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 8.3
17 to 23
Strength to Weight: Bending, points 10
17 to 21
Thermal Shock Resistance, points 9.5
16 to 21

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
0 to 0.25
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 91 to 94
0
Iron (Fe), % 0 to 0.2
61.4 to 63.9
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.5
36
Phosphorus (P), % 0 to 0.050
0 to 0.020
Selenium (Se), % 0
0.15 to 0.3
Silicon (Si), % 0 to 0.0050
0 to 0.35
Sulfur (S), % 0 to 0.050
0 to 0.020
Tin (Sn), % 6.0 to 8.0
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.6
0