MakeItFrom.com
Menu (ESC)

C90300 Bronze vs. R56401 Titanium

C90300 bronze belongs to the copper alloys classification, while R56401 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C90300 bronze and the bottom bar is R56401 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 22
9.1
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 41
40
Tensile Strength: Ultimate (UTS), MPa 330
940
Tensile Strength: Yield (Proof), MPa 150
850

Thermal Properties

Latent Heat of Fusion, J/g 190
410
Maximum Temperature: Mechanical, °C 170
340
Melting Completion (Liquidus), °C 1000
1610
Melting Onset (Solidus), °C 850
1560
Specific Heat Capacity, J/kg-K 370
560
Thermal Conductivity, W/m-K 75
7.1
Thermal Expansion, µm/m-K 18
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 33
36
Density, g/cm3 8.7
4.5
Embodied Carbon, kg CO2/kg material 3.4
38
Embodied Energy, MJ/kg 56
610
Embodied Water, L/kg 370
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
83
Resilience: Unit (Modulus of Resilience), kJ/m3 110
3440
Stiffness to Weight: Axial, points 7.0
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 11
59
Strength to Weight: Bending, points 12
48
Thermal Diffusivity, mm2/s 23
2.9
Thermal Shock Resistance, points 12
67

Alloy Composition

Aluminum (Al), % 0 to 0.0050
5.5 to 6.5
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 86 to 89
0
Hydrogen (H), % 0
0 to 0.012
Iron (Fe), % 0 to 0.2
0 to 0.25
Lead (Pb), % 0 to 0.3
0
Nickel (Ni), % 0 to 1.0
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 1.5
0
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 7.5 to 9.0
0
Titanium (Ti), % 0
88.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 3.0 to 5.0
0
Residuals, % 0 to 0.6
0