MakeItFrom.com
Menu (ESC)

C90500 Gun Metal vs. 3203 Aluminum

C90500 gun metal belongs to the copper alloys classification, while 3203 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C90500 gun metal and the bottom bar is 3203 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 20
4.5 to 29
Fatigue Strength, MPa 90
46 to 92
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 320
110 to 200
Tensile Strength: Yield (Proof), MPa 160
39 to 190

Thermal Properties

Latent Heat of Fusion, J/g 190
400
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 1000
650
Melting Onset (Solidus), °C 850
620
Specific Heat Capacity, J/kg-K 370
900
Thermal Conductivity, W/m-K 75
170
Thermal Expansion, µm/m-K 18
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
43
Electrical Conductivity: Equal Weight (Specific), % IACS 11
140

Otherwise Unclassified Properties

Base Metal Price, % relative 35
9.0
Density, g/cm3 8.7
2.8
Embodied Carbon, kg CO2/kg material 3.6
8.1
Embodied Energy, MJ/kg 59
150
Embodied Water, L/kg 390
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
8.0 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 110
11 to 250
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
50
Strength to Weight: Axial, points 10
11 to 20
Strength to Weight: Bending, points 12
19 to 28
Thermal Diffusivity, mm2/s 23
70
Thermal Shock Resistance, points 12
4.9 to 8.8

Alloy Composition

Aluminum (Al), % 0 to 0.0050
96.9 to 99
Antimony (Sb), % 0 to 0.2
0
Copper (Cu), % 86 to 89
0 to 0.050
Iron (Fe), % 0 to 0.2
0 to 0.7
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
1.0 to 1.5
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 1.5
0
Silicon (Si), % 0 to 0.0050
0 to 0.6
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 1.0 to 3.0
0 to 0.1
Residuals, % 0
0 to 0.15