MakeItFrom.com
Menu (ESC)

C90500 Gun Metal vs. ACI-ASTM CG12 Steel

C90500 gun metal belongs to the copper alloys classification, while ACI-ASTM CG12 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C90500 gun metal and the bottom bar is ACI-ASTM CG12 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 20
40
Fatigue Strength, MPa 90
190
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
78
Tensile Strength: Ultimate (UTS), MPa 320
550
Tensile Strength: Yield (Proof), MPa 160
220

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Maximum Temperature: Mechanical, °C 170
1040
Melting Completion (Liquidus), °C 1000
1410
Melting Onset (Solidus), °C 850
1370
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 75
15
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 35
18
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.6
3.3
Embodied Energy, MJ/kg 59
48
Embodied Water, L/kg 390
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
180
Resilience: Unit (Modulus of Resilience), kJ/m3 110
120
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10
20
Strength to Weight: Bending, points 12
19
Thermal Diffusivity, mm2/s 23
4.0
Thermal Shock Resistance, points 12
12

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 86 to 89
0
Iron (Fe), % 0 to 0.2
60.3 to 70
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0 to 1.0
10 to 13
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 2.0
Sulfur (S), % 0 to 0.050
0 to 0.040
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 1.0 to 3.0
0
Residuals, % 0 to 0.3
0