MakeItFrom.com
Menu (ESC)

C90500 Gun Metal vs. CC499K Bronze

Both C90500 gun metal and CC499K bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have a moderately high 94% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C90500 gun metal and the bottom bar is CC499K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 20
13
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 40
41
Tensile Strength: Ultimate (UTS), MPa 320
260
Tensile Strength: Yield (Proof), MPa 160
120

Thermal Properties

Latent Heat of Fusion, J/g 190
190
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 1000
1000
Melting Onset (Solidus), °C 850
920
Specific Heat Capacity, J/kg-K 370
370
Thermal Conductivity, W/m-K 75
73
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
12
Electrical Conductivity: Equal Weight (Specific), % IACS 11
12

Otherwise Unclassified Properties

Base Metal Price, % relative 35
32
Density, g/cm3 8.7
8.8
Embodied Carbon, kg CO2/kg material 3.6
3.1
Embodied Energy, MJ/kg 59
51
Embodied Water, L/kg 390
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
27
Resilience: Unit (Modulus of Resilience), kJ/m3 110
65
Stiffness to Weight: Axial, points 6.9
6.9
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 10
8.1
Strength to Weight: Bending, points 12
10
Thermal Diffusivity, mm2/s 23
22
Thermal Shock Resistance, points 12
9.2

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0 to 0.010
Antimony (Sb), % 0 to 0.2
0 to 0.1
Arsenic (As), % 0
0 to 0.030
Bismuth (Bi), % 0
0 to 0.020
Cadmium (Cd), % 0
0 to 0.020
Chromium (Cr), % 0
0 to 0.020
Copper (Cu), % 86 to 89
84 to 88
Iron (Fe), % 0 to 0.2
0 to 0.3
Lead (Pb), % 0 to 0.3
0 to 3.0
Nickel (Ni), % 0 to 1.0
0 to 0.6
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 0.010
Sulfur (S), % 0 to 0.050
0 to 0.040
Tin (Sn), % 9.0 to 11
4.0 to 6.0
Zinc (Zn), % 1.0 to 3.0
4.0 to 6.0
Residuals, % 0 to 0.3
0