MakeItFrom.com
Menu (ESC)

C90500 Gun Metal vs. C14300 Copper

Both C90500 gun metal and C14300 copper are copper alloys. They have 88% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C90500 gun metal and the bottom bar is C14300 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 20
2.0 to 42
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 320
220 to 460
Tensile Strength: Yield (Proof), MPa 160
76 to 430

Thermal Properties

Latent Heat of Fusion, J/g 190
210
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 1000
1080
Melting Onset (Solidus), °C 850
1050
Specific Heat Capacity, J/kg-K 370
390
Thermal Conductivity, W/m-K 75
380
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
96
Electrical Conductivity: Equal Weight (Specific), % IACS 11
96

Otherwise Unclassified Properties

Base Metal Price, % relative 35
31
Density, g/cm3 8.7
9.0
Embodied Carbon, kg CO2/kg material 3.6
2.6
Embodied Energy, MJ/kg 59
41
Embodied Water, L/kg 390
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
9.0 to 72
Resilience: Unit (Modulus of Resilience), kJ/m3 110
25 to 810
Stiffness to Weight: Axial, points 6.9
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 10
6.8 to 14
Strength to Weight: Bending, points 12
9.1 to 15
Thermal Diffusivity, mm2/s 23
110
Thermal Shock Resistance, points 12
7.8 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Cadmium (Cd), % 0
0.050 to 0.15
Copper (Cu), % 86 to 89
99.9 to 99.95
Iron (Fe), % 0 to 0.2
0
Lead (Pb), % 0 to 0.3
0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 1.5
0
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 1.0 to 3.0
0
Residuals, % 0 to 0.3
0