MakeItFrom.com
Menu (ESC)

C90500 Gun Metal vs. C66300 Brass

Both C90500 gun metal and C66300 brass are copper alloys. They have a moderately high 91% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C90500 gun metal and the bottom bar is C66300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 20
2.3 to 22
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 40
42
Tensile Strength: Ultimate (UTS), MPa 320
460 to 810
Tensile Strength: Yield (Proof), MPa 160
400 to 800

Thermal Properties

Latent Heat of Fusion, J/g 190
200
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 1000
1050
Melting Onset (Solidus), °C 850
1000
Specific Heat Capacity, J/kg-K 370
380
Thermal Conductivity, W/m-K 75
110
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
25
Electrical Conductivity: Equal Weight (Specific), % IACS 11
26

Otherwise Unclassified Properties

Base Metal Price, % relative 35
29
Density, g/cm3 8.7
8.6
Embodied Carbon, kg CO2/kg material 3.6
2.8
Embodied Energy, MJ/kg 59
46
Embodied Water, L/kg 390
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
17 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 110
710 to 2850
Stiffness to Weight: Axial, points 6.9
7.2
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 10
15 to 26
Strength to Weight: Bending, points 12
15 to 22
Thermal Diffusivity, mm2/s 23
32
Thermal Shock Resistance, points 12
16 to 28

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 86 to 89
84.5 to 87.5
Iron (Fe), % 0 to 0.2
1.4 to 2.4
Lead (Pb), % 0 to 0.3
0 to 0.050
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 1.5
0 to 0.35
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 9.0 to 11
1.5 to 3.0
Zinc (Zn), % 1.0 to 3.0
6.0 to 12.8
Residuals, % 0
0 to 0.5