MakeItFrom.com
Menu (ESC)

C90500 Gun Metal vs. C86400 Bronze

Both C90500 gun metal and C86400 bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 63% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C90500 gun metal and the bottom bar is C86400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 20
17
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 320
470
Tensile Strength: Yield (Proof), MPa 160
150

Thermal Properties

Latent Heat of Fusion, J/g 190
170
Maximum Temperature: Mechanical, °C 170
120
Melting Completion (Liquidus), °C 1000
880
Melting Onset (Solidus), °C 850
860
Specific Heat Capacity, J/kg-K 370
390
Thermal Conductivity, W/m-K 75
88
Thermal Expansion, µm/m-K 18
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
19
Electrical Conductivity: Equal Weight (Specific), % IACS 11
22

Otherwise Unclassified Properties

Base Metal Price, % relative 35
23
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 3.6
2.8
Embodied Energy, MJ/kg 59
48
Embodied Water, L/kg 390
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
63
Resilience: Unit (Modulus of Resilience), kJ/m3 110
110
Stiffness to Weight: Axial, points 6.9
7.3
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 10
16
Strength to Weight: Bending, points 12
17
Thermal Diffusivity, mm2/s 23
29
Thermal Shock Resistance, points 12
16

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0.5 to 1.5
Antimony (Sb), % 0 to 0.2
0
Copper (Cu), % 86 to 89
56 to 62
Iron (Fe), % 0 to 0.2
0.4 to 2.0
Lead (Pb), % 0 to 0.3
0.5 to 1.5
Manganese (Mn), % 0
0.1 to 1.0
Nickel (Ni), % 0 to 1.0
0 to 1.0
Phosphorus (P), % 0 to 1.5
0
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 9.0 to 11
0.5 to 1.5
Zinc (Zn), % 1.0 to 3.0
34 to 42
Residuals, % 0
0 to 1.0